

Phylogeography of *Reticulitermes* Termites From California

College of Agriculture and Life Sciences

http://comp.uark.edu/~aszalan

Jackie McKern¹, Amber Tripodi¹, Allen L. Szalanski¹, and James W. Austin² ¹University of Arkansas, Department of Entomology, Fayetteville, AR 72701 ²Texas A&M University, Department of Entomology, College Station, TX 77845

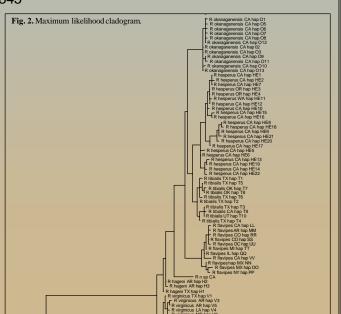
Abstract

A molecular genetics study involving DNA sequencing of a portion of the mitochondrial DNA 16S gene was conducted to determine the extent of genetic variation within Reticulitermes from California. A total of 89 samples were analyzed. Twenty-five nucleotide sites were variable in R. Hesperus, and 19 mtDNA haplotypes were observed in the 428 bp mtDNA sequence. Fourteen haplotypes (37%) occurred only once, while the most common haplotypes, HE4 and HE9, each occurred in 18% of the samples. While some haplotypes were found to have a broad geographical range across the state, some were restricted to the southern region. Samples identified as R. tibialis were more exclusive to the southern region of California. Twelve haplotypes of a newly described species, R. okanaganensis Szalanski & Austin, were found. The first positive identification of R. flavipes from California is reported.

Introduction

There is a general consensus that the genus Reticulitermes is in desperate need of revision (Weesner 1970, Nutting 1990, Scheffrahn & Su 1994). This is an especially difficult task due to the problematic nature of this genus, namely the lack of discrete morphological characters, which accurately identify specimens within the genus. Recent studies of subterranean termites in the United States have implicated the identity of undescribed species of Reticulitermes (Isoptera: Rhinotermitidae) in California applying mitochondrial DNA (mtDNA) markers (Austin et al. 2002) and cuticular hydrocarbons (Haverty & Nelson 1997, Haverty et al. 1999, Nelson et al. 2001). Existing taxonomic studies of Reticulitermes from California provide information on two described species: R. hesperus Banks and R. tibialis Banks (Weesner 1970, Nutting 1970). The likelihood of undescribed species of Reticulitermes in California has been established with cuticular hydrocarbon data (Haverty et al. 1999ab, Delphia et al. 2003). In this study, a phylogenetic analysis of Reticulitermes applying the 16S mtDNA gene was conducted. In addition, the geographic distributions of Reticulitermes species and species' haplotypes throughout the region are discussed.

Fig. 1. Map of Reticulitermes haplotype distribution in California.


Materials and Methods

Termites were collected from various locations in California, both from our own collecting efforts and from the 2002 National Termite Survey (Fig. 1). DNA extraction, PCR, and DNA sequencing was conducted per Szalanzki et al. (2004 Ann. Entomol. Soc. Amer. 97: 556-566). Mitochondrial DNA haplotypes were aligned using MacClade v4 (Sinauer Associates, Sunderland, MA). DNA sequences were aligned using CLUSTAL W (Thompson et al. 1994), Mitochondrial 16S sequences from additional R. hesperus, R. tibialis, R. hageni Banks, R. okanaganensis, R. flavipes, and R. virginicus (Banks) (Szalanski et al. 2003, submitted; Austin et al. 2004abc) were added to the California dataset for comparison along with DNA sequences from the Formosan termite, Coptotermes formosanus Shiraki (GenBank AY558910), and Heterotermes aureus (Snyder) (GenBank AY280399), which were added to act as outgroup taxa. Maximum likelihood and unweighted parsimony analysis on the alignments was conducted using PAUP* 4.0b10 (Swofford 2001) per Austin et al. (2004a) with the exception of the transition/transversion ratio, which was set to 2.541707.

Table 1. Collection data and haplotypes for Reticulitermes.

Species	City	County	Нар	N	Species	City	County	Hap	N
R. flavipes	Sacramento	Sacramento	FLL	1	R. okanaganensis	Chino	San Bernardino	01	- 1
	El Cajon	San Diego	F VV	1		Grass Valley	Nevada	01	- 1
R. hesperus	Novato	Marin	HE 1	1		Irvine	Orange	01	1
	Riverside	Riverside	HE 1	1		Napa	Napa	01	- 1
	San Luis Obispo	San Luis Obispo	HE 1	2		Placerville	El Dorado	02	- 1
	San Leandro	Alameda	HE 2	1		Auburn	Placer	03	2
	Alabama Hills	Calaveras	HE 4	1		Bakersfield	Kern	03	1
	Napa	Napa	HE 4	2		Davis	Yolo	03	1
	San Francisco	San Francisco	HE 4	1		Dinuba	Tulare	03	1
	San Mateo	San Mateo	HE 4	1		Lafayette	Contra Costa	03	- 1
	Strathmore	Tulare	HE 4	1		Lake Arrowhead	San Bernardino	03	- 1
	Visalia	Tulare	HE 4	1		Napa	Napa	03	1
	Groveland	Tuolumne	HE 5	1		Strathmore	Tulare	03	1
	Palm Springs	Riverside	HE 6	1		Walnut Creek	Contra Costa	03	1
	Riverside	Riverside	HE 6	2		Sebastopol	Sonoma	05	1
	Westminster	Orange	HE 6	1		Walnut Creek	Contra Costa	05	1
	Brea	Orange	HE 7	1		Burbank	Los Angeles	06	1
	Napa	Napa	HE 7	1		Santa Maria	Santa Barbara	06	1
	Hanford	Kings	HE 8	1		Mission Viejo	Orange	07	- 1
	Long Beach	Los Angeles	HE 9	2		Riverside	Riverside	07	- 1
	Monarch Beach	Orange	HE 9	1		Walnut	Los Angeles	07	2
	Norco	Riverside	HE 9	1		Pauma Valley	San Diego	08	1
	Santa Catalina Island	Los Angeles	HE 9	1		San Marcos	San Diego	08	- 1
	Topanga Park	Los Angeles	HE 9	1		Davis	Yolo	09	- 1
	Walnut	Los Angeles	HE 9	1		Napa	Napa	09	2
	Hanford	Kings	HE 10	1		Oakland	Alameda	09	1
	Stockton	San Joaquin	HE 13	1		Oakland	Alameda	O 10	1
	Stockton	San Joaquin	HE 14	1		Rocklin	Placer	O 10	1
	Porterville	Tulare	HE 15	1		Napa	Napa	0 11	1
	Porterville	Tulare	HE 16	1		Corona Del Mar	Orange	0 12	1
	Los Angeles	Los Angeles	HE 17	1		Covina	Los Angeles	0 12	1
	Santa Maria	Santa Barbara	HE 18	1		Culver City	Los Angeles	0 12	1
	Sacramento	Sacramento	HE 19	1		Laguna Beach	Orange	O 12	- 1
	Glendale	Los Angeles	HE 20	1		Los Angeles	Los Angeles	0 12	2
	Los Angeles	Los Angeles	HE 21	1		Pomona	Los Angeles	0 12	1
	Penn Valley	Nevada	HE 22	1		San Juan Capistrano	Orange	0 12	1
R. tibialis	-	San Bernardino	Т3	1		Upland	San Bernardino	0 12	1
	Diamond Bar	Los Angeles	T 9	1		W. Covina	Los Angeles	0 12	1
	San Bernardino	San Bernardino	T 9	1		Walnut	Los Angeles	0 12	1
undescribed species	Sail Demardino	San Demardino	1 5	ľ		waniut	Los Aligeles	012	
R. californicus	Arrowbear	San Bernadino		1		Westminster	Orange	0 12	1
Coptotermes formosanus	Baton Rouge, LA		outgroup			Stockton	San Joaquin	0 13	1
Heterotermes aureus	Santa Rita, AZ		outgroup			CICKION	Can obaquin	0 13	

Acknowledgements

Results and Discussion

DNA sequencing of the 16S rRNA amplicon revealed an average size of 428 bp. The average base frequencies were A = 0.41, C = 0.23, G = 0.13, and T = 0.23. Among the 89 Reticulitermes mtDNA 16S DNA sequences, a total of 21 nucleotide sites were variable. Reticulitermes hesperus was found in 17 counties of the 25 California counties sampled (Fig. 1). Éighteen distinct haplotypes (lineages) were observed (Table 1). Fourteen haplotypes occurred only once, while the most common haplotypes, HE4 and HE9, each accounted for 18% of the R. hesperus samples. Haplotype HE4 was found over the largest geographical area (Fig. 1).

Twelve haplotypes of the newly described species R. okanaganensis were found in 17 of the counties sampled. Haplotype O12 was the most common, occurring in 27% of the samples, and was only present in samples from the southwestern extreme of the state (Fig. 1). Haplotype O3 was also common, occurring in 22% of the samples and covered the broadest geographic area (Fig. 1). The identification of R. okanaganensis haplotypes O1 through O13 demonstrates considerable variation in this species given the number of samples (43) evaluated in the present study. A single sample of a genetically distinct species, R. sp. nov. "californicus", was discovered in Arrowbear, CA in San Bernadino county.

Phylogenetic analysis of Reticulitermes from California reveals discrete clades, which support the monophyletic nature of R. hesperus and R. tibialis (Fig. 2). The identification of R. flavipes, the Eastern Subterranean termite, from Sacramento and El Cajon likely represents either extreme western distributions of the species or accidental introductions from anthropogenic sources. The latter seems more plausible given the omission of information about the species' presence in California as well as the geographic distance separating the two samples. Because R. flavipes is a considerable pest of structures in the United States and around the world, evaluation of the presence of this species in California should be carefully evaluated to see if its presence will compete with R. hesperus as a destructive pest in the future.