Feeding on a begomovirus-infected plant enhances fecundity via increased expression of an insulin-like peptide in the whitefly, MEAM1

Tuesday, November 18, 2014: 3:15 PM
Portland Ballroom 255 (Oregon Convention Center)
Qi Fang , Zhejiang University, Hangzhou, China
Jianyang Guo , Chinese Academy of Agricultural Sciences, Beijing, China
Lu Cheng , Zhejiang University, Hangzhou, China
Gongyin Ye , Zhejiang University, Hangzhou, China
The Middle East-Minor 1 cryptic species (MEAM1), Bemisia tabaci (Gennadius) is a globally invasive pest. It spreads widely due to its high fecundity and mutualistic interactions with the virus they vector. Feeding on virus (tomato yellow leaf curl China virus, TYLCCNV)-infected host plants improves their fecundity, however, the key factor regulating the signaling transduction in reproduction of whitefly remains to be identified. Here, we cloned a full length cDNA encoding an insulin-like peptide in MEAM1 (BtILP1) and investigated its expression profile, functions, and the expression induced by feeding on virus-infected tobacco plants. The full length cDNA ofBtILP1 was 590 bps and encoded an open reading frame containing 149 amino acid residues. Multiple sequences alignment results showed BtILP1 contained the structural features typical of the insulin family. Expression dynamics associated with development showed the expression level of BtILP1 peaked at 5 days posteclosion (PE). During 1 to 3 days PE, BtILP1 was expressed highly in the head and abdomen of female adults and highly in the head during 5 to 7 days PE. Knockdown of the BtILP1 expression also impaired vitellogenin gene expression at both transcript and protein levels. Downregulating BtILP1 expression decreased fecundity of female adults and hatching rate of eggs. Feeding on virus-infected tobacco increased BtILP1 expression in MEAM1 female adults. We infer feeding on begomovirus-infected tobacco enhances the reproduction of MEAM1 by inducing BtILP1 expression. Our results give a new sight into the mutualistic interactions between virus and its insect vector.