Functional trophic guilds in a subtropical arid agroecosystem: which is the most beneficial?

Introduction

Developing a habitat management program to promote the conservation and augmentation of biological control services requires a deep knowledge of the taxonomy and functional diversity of arthropods in a specific agroecosystem The objective of this study was evaluated the effect of the landscape structure on the arthropod community (taxonomic composition, abundance, functional groups and diversity) related to potato agroecosystem in the central coast of Peru

Materials and methods

This study was conducted in experimental potato (*Solanum tuberosum* L.) fields without the application of insecticides planted in the localities of San Juan de Ihuanco (complex landscape) and Cañete (simple landscape) in the province of Cañete, Lima (Fig. 1, Table 1). Arthropod samples were taken above plant canopy using Malaise traps and from the soil strata using pitfall traps during theentire cropping season.

A. Canopy arthropod guild **B.** Soil arthropod guild Predator Predator _28.61% 36.68% Indifferer 27.27% Indifferen 43.13% Pollinator 0.03% Pollinator Phytophagous 19.18% Parasitoid 0.05% Parasitoid 6.39% 24.91% Phytophagous 13.75%

Fig. 4. Relative abundance of trophic guilds in the potato canopy (A) and soil (B) in the central coast of Peru.

Norma Mujica and Jürgen Kroschel

Agroecology/IPM

Table 1. Structural features of the simple and complex agricultural landscape groups examined in two localities of the Cañete province.

Structural features	Lands	D
	Ihuanco	Cañete valley

Fig.5. Mean abundance (±SE) of arthropod trophic guilds and main taxonomic families recorded in two strata of the potato crop from complex (Ihuanco) and simple (Cañete) landscapes (IND: Indifferent PHY: phytophagous, PAR: parasitoids, PRE: predators, Dro:Drosophilidae, Mus: Muscidae, Agr: Agromyzidae, Cec: Cecidomyiidae, Cic: Cicadellidae, Bra: Braconidae, Eul:Eulophidae, Pte: Pteromalidae, Dol: Dolichopodidae, Ent: Entomobryidae, Por: Porcellionidae, Chr: Chrysomelidae, Gry: Grillidae, Car: Carabidae, Lin: Lyniphidae, Lab: Labiduridae, Sta: Staphylinidae).

Phytophagous species associated to potato crop

Twenty phytophagous species associated to potato crop were identified, with *Liriomyza huidobrensis* (Blanchard) (Agromyzidae) and *Prodiplosis longifila* Gagne (Cecidomyiidae) as the most important pests (Table 2).

Global Program of Integrated Crop and Systems Research International Potato Center P.O. Box 1558, Lima 12, Peru

arable land	20.95 <u>+</u> 4.71	81.66 <u>+</u> 10.69	0.0095
hedgerows, field margins	4.61 <u>+</u> 0.43	0.10 <u>+</u> 0.06	0.0004
roads	1.90 <u>+</u> 0.74	2.65 <u>+</u> 0.23	0.3441 (NS)
settlement	0.18 <u>+</u> 0.04	14.69 <u>+</u> 11.11	0.1210 (NS)
irrigation channels	0.09 <u>+</u> 0.03	0.17 <u>+</u> 0.11	0.6170 (NS)

Results and discussion

Arthropods: Taxonomic composition

A rich arthropod fauna comprising a total of 58148 specimens classified in 379 morphospecies in 119 families, 19 orders and five classes were collected from potato agroecosystem in the Cañete region (Fig. 2). Differences in relative abundance were observed according to crop strata evaluated (Fig. 3). In the total arthropod community Diptera, Coleoptera and Hymenoptera not only had the highest taxonomic richness but were the most abundant orders.

e abundance were	rating scale
hropod community nomic richness but	ORDER / F
	COLEOPTER
g. 2 Taxonomy mposition and	Chrysomelid
lative abundance of	
e arthropod ommunity in potato proecosystem of the	Scarabaeida
añete region at the	
entral coast of Peru.	DIPTERA
	Agromyzidae
g. 3 . Abundance of	
thropod orders in the	Cecidomyiida
nopy and soil strata	HEMIPTERA
polalo polalo	Aleyrodidae
anete vallev of the	Aphididae
ntral coast of Peru	Cicadellidae

Liriomyza huidobrensis		Prodiplosis longifila							
able 2 . List of main potato pests identified in simple and complex landscapes of the Cañete province in the central coast of Peru. Damage intensity estimated by using a ating scale of four levels: no infestation (), low (+), medium (++) and high (+++).									
		Loca	lities	Total		Importance*			
ORDER / Family	Specie	Cañete	Ihuanco	n	%				
OLEOPTERA									
Chrysomelidae	Diabrotica decolor	8	690	698	8.13	+			
	Diabrotica sp. (2 species)	1	19	20	0.23	+			
	<i>Epitrix</i> sp.	30	522	552	6.43	+			
Scarabaeidae	Anomala undulata	84	77	161	1.88	++			
	<i>Bothynus</i> sp.	6	6	12	0.14	+			
	Cyclocephala sp.	1	11	12	0.14	+			
IPTERA									
Agromyzidae	Liriomyza quadrata	59	79	138	1.61	+			
	Liriomyza huidobrensis	2241	876	3117	36.32	+++			
Cecidomyiidae	Prodiplosis longifila	628	258	886	10.32	+++			
EMIPTERA									
Aleyrodidae	Bemisia tabaci	42	232	274	3.19	+			

• G\ CIP ___ •

Miembro del Consorcio CGIAR

Ciencia para un futuro sin hambre

Arthropod: Functional guilds

In the total arthropod community, a major abundance of natural enemies (32.5% of predators plus 15.9% of parasitoids) compared to phytophagous (16.5%) was observed. Indifferent arthropods formed one third of the arthropod population (Fig. 4). Some differences in the arthropod composition of functional groups were observed according to the trapping method used (pitfall or malaise trap) (Fig. 5).

LEPIDOPTERA						
Gelechiidae	Phthorimaea operculella		4	4	0.05	+
	Tuta absoluta	5	191	196	2.28	+
Noctuidae	Agrotis sp. (2 species)	6	18	24	0.28	++
	Spodoptera frugiperda	100	158	258	3.01	++
ORTHOPTERA						
Gryllidae	Grillus assimilis	249	808	1057	12.32	+
THYSANOPTERA						
Thripidae	Trips tabaci	1	4	5	0.06	+
Grand Total		3641	4942	8583	100.00	

Myzus persicae

Empoasca kraemeri

66

114

482

507

548

621

6.38

7.24

+

Table 3. Indicators of biocontrol diversity for richness species and abundance for complex and simple landscape at the central Peruvian coast.

Twenty phytophagous species associated to potato crop were identified, with <i>Liriomyza huidobrensis</i> (Blanchard) (Agromyzidae) and <i>Prodiplosis longifila</i> Gagne	Twenty phytophagous species associated to potato crop were identified, with <i>Liriomyza huidobrensis</i> (Blanchard) (Agromyzidae) and <i>Prodiplosis longifila</i> Gagne (Cecidomyiidae) as the most important pests.			Twenty phytophagous species associated to potato crop were identified, with <i>Liriomyza huidobrensis</i> (Blanchard) (Agromyzidae) and <i>Prodiplosis longifila</i> Gagne (Cecidomyiidae) as the most important pests.		
(Cecidomylidae) as the most important pests.	Complex	Simple	Total	Complex	Simple	Total
oarasitoid / phytophagous	2.8	1.8	3.1	1.1	1.1	1.1
oredator / phytophagous	3.4	2.6	3.7	1.7	3.0	2.2
entomophagous /						
ohytophagous	6.2	5.1	6.8	2.7	4.1	3.3

Conclusion

The complex landscape had a higher taxonomic and functional diversity than the simple landscape. Biological control services showed that richness of entomophagous (predators and parasitoids) species in relation to potato pests was higher in complex than simple landscape (table 3). However, ecosystem services of entomophagous abundance were superior in simple landscape. The potato agroecosystem shelter a diverse and abundant entomophagous guild that be improved with adequate can management strategies and consequently increase ecosystem resilience to pest outbreaks