Xenorhabdus nematophilus is a Gram-negative symbiotic bacterium of the entomopathogenic nematode, Steinernema carpocapsae. Previous reports suggest that the immunodepression is caused by inhibition of the eicosanoid pathway that is known to be critically important to mediate cellular immunity. This study focused on the inhibitory effect of X. nematophilus on PLA2 activity of Spodoptera exigua. The PLA2 activity was functionally associated with the activation cascade of prophenoloxidase (pPO). Dexamethasone (DEX), a specific PLA2 inhibitor, inhibited pPO activation completely at the higher doses of »2.4mM in vitro condition. The inhibitory effect of DEX was reversed by the addition of arachidonic acid, the catalytic product of PLA2. By means of this in vitro PLA2 inhibitor assay system, two different PLA2 inhibitors were used to compare their inhibitory effects on the hemolymph PLA2 of S. exigua. p-Bromophenacyl bromide (BPB), a specific inhibitor of secretory PLA2 (sPLA2), significantly inhibited pPO activation, but methylarachidonyl fluorophosphates (MAFP), a specific inhibitor of cytosolic PLA2 (cPLA2), did not show any inhibitory effect. BPB also inhibited pPO activation of the plasma, though much higher PO activation and its inhibition by BPB was found in the hemocytes. Growth medium of X. nematophilus at the stationary phase had PLA2 inhibitory effect. Via the in vitro PLA2 inhibitor assay, it was shown that the ethyl ether extract of the medium contained significant PLA2 inhibitor activity. These results indicate that X. nematophilus produces and secretes PLA2 inhibitor, which acts on BPB-susceptible PLA2 of S. exigua.
Species 1: Lepidoptera Noctuidae Spodoptera exigua (beet armyworm)
Keywords: phospholipase A2, immunity
Back to Ten-Minute Papers, Section B. Physiology, Biochemistry, Toxicology, and Molecular Biology
Back to Ten-Minute Papers, Section B. Physiology, Biochemistry, Toxicology, and Molecular Biology
Back to The 2003 ESA Annual Meeting and Exhibition